Skip to main content
Graduate School of Biomedical Sciences

Recent Publications from the Kumamoto Lab

Romo JA, Kumamoto CA. 2020. On commensalism of Candida. J Fungi. 6(1). pii: E16. doi: 10.3390/jof6010016. Abstract

Burgain A, Pic É, Markey L, Tebbji F, Kumamoto CA, Sellam A. 2019. A novel genetic circuitry governing hypoxic metabolic flexibility, commensalism and virulence in the fungal pathogen Candida albicans. PLos Pathog. 15: e1007823. Abstract

Stewart D, Romo JA, Lamendella R, Kumamoto CA. 2019. The role of fungi in C. difficile infection: An underappreciated transkingdom interaction. Fungal Genet Bio. Epub ahead of print. Abstract

Markey L, Shaban L, Green ER, Lemon KP, Mecsas J, Kumamoto CA. 2018. Pre-colonization with the commensal fungus Candida albicans reduces murine susceptibility to Clostridium difficile infection. Gut Microbes Epub ahead of print. Abstract

Arsenault AB, Gunsalus KTW, Laforce-Nesbitt SS, Przystac L, DeAngelis EJ, Hurley ME, Vorel ES, Tucker R, Matthan NR, Lichtenstein AH, Kumamoto CA, Bliss JM. 2018. Dietary supplementation with medium-chain triglycerides reduces Candida gastrointestinal colonization in preterm infants. Pediatr Infect Dis. Epub ahead of print. Abstract

Shaban L, Chen Y, Fasciano AC, Lin Y, Kaplan DL, Kumamoto CA, Mecsas J. 2018. A 3D intestinal tissue model supports Clostridioides difficile germination, colonization, toxin production and epithelial damage. Anaerob Epub ahead of print. Abstract

Regan H, Scaduto C, Hirakawa MP, Gunsalus K, Correia-Mesquita TO, Sun Y, Chen Y, Kumamoto CA, Bennett R, Whiteway M. 2017. Negative regulation of filamentous growth in Candida albicans by Dig1p. Mol Microbiol. 105: 810-824. Abstract

Herwald SE, Zucchi PC, Tan S, Kumamoto CA. 2017. The two transmembrane regions of Candida albicans Dfi1 contribute to its biogenesis. Biochem Biophys Res Commun. 488: 153-158. Abstract

Green ER, Clark S, Crimmins GT, Mack M, Kumamoto CA, Mecsas J. 2016. Fis is essential for Yersinia pseudotuberculosis virulence and protects against reactive oxygen species produced by phagocytic cells during infection. PLoS Pathog. 12: e1005898.   Abstract

Kumamoto CA. 2016. The fungal mycobiota: Small numbers, large impacts. Cell Host Microbe 19: 750-751.   Abstract

Tyc KM, Herwald SE, Hogan JA, Pierce JV, Klipp E, Kumamoto CA. 2016. The game theory of Candida albicans colonization dynamics reveals host status-responsive gene expression. BMC Syst Biol. 10: 20.   Abstract

Gunsalus KT, Kumamoto CA. 2016. Transcriptional profiling of Candida albicans in the host. Methods Mol Biol. 1356:17-29.   Abstract

Gunsalus KT, Tornberg-Belanger SN, Matthan NR, Lichtenstein AH, Kumamoto CA.. 2015. Manipulation of host diet to reduce gastrointestinal colonization by the opportunistic pathogen Candida albicans. mSphere 1: pii: e00020-15.  Abstract

Chen Y, Lin Y, Davis KM, Wang Q, Rnjak-Kovacina J, Li C, Isberg RR, Kumamoto CA, Mecsas J, Kaplan DL 2015. Robust bioengineered 3D functional human intestinal epithelium. Sci Rep. 5: 13708.   Abstract

Tebbji F, Chen Y, Richard Albert J, Gunsalus KT, Kumamoto CA, Nantel A, Sellam A, Whiteway M. 2014. A functional portrait of Med7 and the mediator complex in Candida albicans. PLoS Genet. 10: e1004770. Abstract

Strijbis K, Yilmaz OH, Dougan SK, Esteban A, Gröne A, Kumamoto CA, Ploegh HL. 2014. Intestinal colonization by Candida albicans alters inflammatory responses in Bruton's tyrosine kinase-deficient mice. PLoS One 9: e112472. Abstract

Herwald SE, Kumamoto CA 2014. Candida albicans niche specialization: Features that distinguish biofilm cells from commensal cells. Curr Fungal Infect Rep. 8: 179-184. Abstract

Davis TR, Zucchi PC, Kumamoto CA. 2013. Calmodulin binding to Dfi1p promotes invasiveness of Candida albicans. PLoS One 8: e76239. Abstract

Pérez JC, Kumamoto CA, Johnson AD. 2013. Candida albicans commensalism and pathogenicity are intertwined traits directed by a tightly knit transcriptional regulatory circuit. PLoS Biol. 11: e1001510. Abstract

Pierce JV, Dignard D, Whiteway M, Kumamoto CA. 2013. Normal adaptation of Candida albicans to the murine GI tract requires Efg1p-dependent regulation of metabolic and host defense genes. Eukaryot Cell 12: 37-49. Abstract

Pierce JV, Kumamoto CA. 2012. Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations. MBio. 3: e00117-e00112. Abstract

Petrovska I, Kumamoto CA. 2012. Functional importance of the DNA binding activity of Candida albicans Czf1p. Functional importance of the DNA binding activity of Candida albicans Czf1p. PLoS One 7: e39624. Abstract

Thevissen K, de Mello Tavares P, Xu D, Blankenship J, Vandenbosch D, Idkowiak-Baldys J, Govaert G, Bink A, Rozental S, de Groot PW, Davis TR, Kumamoto CA, Vargas G, Nimrichter L, Coenye T, Mitchell A, Roemer T, Hannun YA, Cammue BP. 2012. The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Mol Microbiol. 84: 166-180. Abstract

Bruzual I, Kumamoto CA. 2012. An MDR1 promoter allele with higher promoter activity is common in clinically isolated strains of Candida albicans. Mol Genet Genomics. 286: 347-357. Abstract